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ABSTRACT: The traditional approach relying on sight reduction tables, a non-programmatic location of the 
position fix and an inadequate allowance for observation errors is still widely pursued and advocated. In the 
late 1970s the programmatic Least Squares method (LSQ) was introduced which determines a random error 
fix (FixQ) for any multiple sights combination. B.D Yallop & C.Y Hohenkerk (1985) expanded LSQ to 
incorporate the computation of the random error margin of a fix. Several marketed PDA-based programs 
apply LSQ, but none have fully incorporated the random error margin as a guide for the navigator. All 
existing LSQ applications have two drawbacks. One is, all observation error is attributed to random sources, 
whereas the possibility of systematic error has in fact a long theoretical and practical background in celestial 
navigation. Systematic error represents a bias in statistical random error theory and can and should be allowed 
for. A major drawback is that existing LSQ program applications incorporate the running fix technique (RFT) 
traditionally applied in coastal navigation. It has no general validity in celestial navigation. The position circle 
of an earlier celestial sight can only be mathematically correctly transferred when its Geometric Position (GP) 
is transferred for the run data. A final aspect of reliability is the strategy adopted at the sight planning stage. 
At least during twilight observations, navigators should aim at getting three or four sights with a total azimuth 
angle >180o, with three successive subsights on each body. In such configurations FixQ and FixS will be 
relatively close together, generally obviating the need to process the sights for possible systematic error.  

1 THE TRADITIONAL VERSUS 
PROGRAMMATIC APPROACH 

The calculator with trig functions makes the use of 
sight reduction (SR) tables redundant and avoids 
precession and nutation problems with AP 3270 
Vol 1. It does not overcome the limitations of the 
non-programmatic approach. Dedicated navigation 
calculators or PDAs would be a solution provided 
they run theoretically correct programs. Better known 
programs such as Starpilot, Astronavigation, 
Celestnav incorporate the traditional running fix 
technique (RFT) which is not generally applicable 
and cannot or cannot meaningfully compute the 
confidence ellipse (error margin) of the programmatic 
LSQ fix.  
 Complete power failure is often cited to support 
the use of SR tables and the non-programmatic 
approach. On today’s yachts such a contingency is 
for many reasons unrealistic and it would jeopardize 
nautical navigation in many ways. A better 
contingency plan is a Pocket PC running, say, 
Windows Mobile/Excel which can support the full 
programmatic approach in one or several 
spreadsheets for any number of sights. 
 The traditional approach relies on a number of 
precepts which are not borne out by modern 
methods and analysis: 
i. The fix is presumed to lie somewhere in the 

middle or centre of a 'cocked hat' n-polygon       
(n ≥ 3).   

   

 None of the above precepts have general validity. 
With i. we mean specifically that the fix is generally 
inside the cocked hat but in irregular n-polygons in 
an eccentric position (e.g see Fig. 6). A fix with 
more than three sights may even lie outside the 
cocked hat n-polygon. One notion propounded by 
G. Huxtable

ii. The position of the vessel is put at the “greatest 
disadvantage”, but it means on a vertex or 
position line of the cocked hat n-polygon 
closest   to a known danger. The error margin 
implied by the cocked hat area cannot be 
quantified. 

iii. Traditional RFT is used to account for the 
transfer of an earlier sight’s position circle for 
the run between sights. 

 
 
 

1 and apparently taught in nav classes in 
England is that the chance of the celestial fix lying 
outside the 3-polygon is 75%, outside the 4-polygon 
87½% etc. The notion derives from random 
errors  in compass bearings in coastal navigation 
(see Fig. 1)2. With random + and - deviations, the 
terrestrial fix with three sights has a 75% chance of 
physically lying in peripheral cocked hat areas 
(Fig. 1, areas 1 to 6). There is only a 25% of the fix 
lying in cocked hat areas abc and def. The terrestrial 
construction is not possible unless (unknown) values 
are assigned to the deviations. 
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Fig. 1. Errors in terrestrial compass bearings versus celestial 
observation errors 
 
The + and - deviations in terrestrial bearings are 
equated with the chance of getting toward (+) and 
away (-) intercept (p) combinations in celestial 
navigation.  The idea pursued by Huxtable is that the 
celestial fix will only lie inside the triangle when the 
p-values are + + + or - - -, which is simply incorrect. 
The  p-values are only corrections for inaccurate DR 
position. With three sights the random error fix will 
always lie inside the triangle and the observation 
errors e1, e2 and e3 are measurable. There is         
a theoretical 25% chance of getting a consistent           
3-polygon (e

   Zn 

i = +++, or ---). Based on the azimuth 
distributions of stars listed in AP 3270 Vol. 1 this 
chance is more like 40%. 

2 LSQ  PECULIARITIES 
 
The programmatic approach is based on LSQ 
(least squares method). The version demonstrated in 
B.D. Yallop and C.Y. Hohenkerk (1986) is applied 
to non-simultaneous sights and uses a RFT-based 
subroutine. We refer to this version as LSQ*. As 
RFT is not generally valid as a transfer technique, 
also LSQ* is not generally valid. For simultaneous 
sights the method is simply LSQ. Both programs 
compute a random error fix and its random error 
margin.   
 Yallop-Hohenkerk (1986, xx) assert that “it is 
possible to start from any position on the Earth, and, 
provided that λf  (i.e LongDR) is kept in the range -
180o to +180 o and ϕf  (i.e LatDR) in the range -90 o to 
+90 o, the position solution in most cases will begin 
to converge after a few iterations”. A position 

solution is indeed in principle independent from the 
initial assumption but different DR assumptions are 
necessary to force LSQ into finding the two 
alternative position fixes resulting from two sights 
with intersecting position circles. This may be 
demonstrated with a numerical example3. For two 
simultaneous sights the two alternative position fixes 
can be found by applying either a double sight 
method like K-Z4 or LSQ.  Results with K-Z are: 
 
Q = 0.387623;  R = 0.277141; S = 1.196021;  
Lat1 = 49.8408; Lat 2 = -6.6652 
MD1,1a = 79.7248; MD1,1b = 15.3635; MD2,1a = 65.7485; 
MD2,1b = 29.3398 
Long1 = GHAS + MD1,1a = GHAM - MD1,1b =3.9715 W; 
Long2 = GHAS + MD2,1a = GHAM - MD2,1b = 10.0048 E; 
Lat1~Long1 = 49.8408 N/3.9715 W (LHAS 280.2752 ~ ZnS 
85.4518; 
LHAM 15.3635 ~ 205.3902); Lat2~Long2 = 6.6652 S/10.0048 E 
(LHAS 294.2515 ~ ZnS 67.4722; LHAM 29.3398 ~ ZnM 
307.5339). 
Note: SinLat1,2 = (Q ± R½)/S; MD = meridian difference. 
 

The same coordinates are found with LSQ using an 
appropriate initial position in each instance: 
 

 Northern Hemisph.: Southern Hemisph.: 

DR 49o 50'.0 N/4o 20'.0 W 6o 42'.0 S/10o 30'.0 E 

 1st iteration 1st iteration 

 Sun Moon Sun Moon 

85.1796 204.8322 67.3309 307.1141 

p  13'.99 -6'.35 -26'.44 24'.73 

 3rd iteration 3rd iteration 

Zn 85.4518 205.3902 67.4722 307.5339 

e  -0'.00 0'.00   -0'.00 0'.00 

FixQ  49.8408 N/3.9715 W   6.6652 S/10.0048 E 
 
 
 
 
3 THE GENERAL EQUATION                              

OF A POSITION CIRCLE 

A position circle is represented on a Mercator chart 
by the general equation.  To plot a relevant segment 
of it on the chart it is necessary to know the 
coordinates of its GP (GHA and Dec) and its radius 
(90o – Ho). To transfer the position circle of an 
earlier sight for a run it is necessary to determine the 
transferred GP in terms of its new coordinates. 
 To quote the ANM on this point: “If the observer 
is  in  a  ship  and  there  is  a run between sights, the 
first  position  circle  must  be transferred for the run.  
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This can be done by transferring the geographical 
position and then drawing the circle.”5 The relevant 
segments of the position circles and their point(s) of 
intersection can only be drawn on a (small-scale) 
chart with a pair of compasses if their altitudes are 
large and radii (zenith distances) consequently small.  
In the general case when zenith distances are very 
large such a construction must use the general 
equation, which was circumvented in the pre-
electronic era by applying traditional RFT known 
from coastal navigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 THE TRANSFER I

With traditional RF
is supposed to represe
An article of faith for
that the transferred po
the run data is postu
position circle. This c
coastal navigation. Th
backward-projected fro
the original position ci

This is nonetheless
two main arguments. O
RFT on which celestia
principle an application

 By nominating longitude intervals for x the 
corresponding latitude values for ϕ can be computed 
and  plotted  as  in  Fig.  2  for  two  sights where  the 
GHA, Dec and Ho are for convenience simplified as 
0o, 0o, 30o and 45o, 1o, 45o respectively. There is a 
run due north of 1o between these sights, so that the 
transferred GP becomes GHA* = 0o, Dec* = 1o. In 
Fig. 2, the longitude scale is fixed but the latitude 
scale is derived from the meridional parts formula.  
The programmatic fix in this case may be obtained 
without plotting by applying K-Z. 

The general equation6 is: 2
are measures of longitud
a = SinHo/CosDec-TanDec
ey- = [-b - (b2 - 4ac)½]/2a = 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Plotting with the general equation of a sight-run-sight case 

Cos(GHA+x) = ey[SinHo(1/CosDec) - TanDec] + (1/ey)[SinHo(1/CosDec) + TanDec, in which x and y 
e and latitude. In terms of its constants the equation may be rewritten as: ae2y - bey + c = 0; 
; b = -2cos(MD); c = SinHo/CosDec + TanDec, so that ey+ = [-b + (b2 - 4ac)½]/2a = Tan (45 + ½ϕ) and 
Tan (45 + ½ϕ). 
SSUE 

T the transferred position line 
nt a position circle segment.  

 traditional RFT supporters is 
sition 'backward-projected' for 
lated to lie on the original 
oncept derives directly from 
us in Fig. 4a, the position J1 
m Fix'Q is supposed to lie on 

rcle of the Moon. 
 an untenable proposition for 
ne is that coastal or terrestrial 
l RFT is patterned is itself in 
 of GD-UT transfer (Fig. 3).   

 

The other argument is that celestial RFT cannot 
specify the transferred position circle in terms of its 
radius 90o - Ho and relocated GP.    

4.1. The terrestrial transfer analogy 

Points A and B in Fig-3 represent landmarks with 
known height and also the GPs of two celestial 
bodies with large altitudes. Assume in the terrestrial 
case the distance to A and to B is determined by 
vertical sextant angle; no bearings are used. 
 The relevant position fix on the chart is at F 
where  the  transferred position  circle with radius  rA
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from A' (PC*1) and the last sight’s position circle 
with radius rB from B (PC2) intersect. Had only the 
bearings been used the fix would also have been in 
F, assuming the celestial azimuths could be observed 
accurately. In the celestial case when rA and rB are 
short zenith distances, DF virtually equals AA' and 
the angle at D the course (α). In the terrestrial case a 
running fix as at F can therefore be found in all 
instances by applying the GD-UT transfer principle 
if rA and rB are known. In the celestial case, F is also 
found in all instances with GD-UT by transferring 
the 1st sight’s GP for the run data7 and plotting the 
relevant sections of PC*1 and PC2 (with the general 
equation). 
 

 
Fig. 3. The GD-UT principle of terrestrial RFT 
 

The celestial case generally involves large zenith 
distances (huge radii rA and rB). In this general case 
the transferred position circle’s locus can no longer 
be found reliably by assuming that it will pass 
through points on the original position circle 
transferred for the run, like J to J*. If J is the initial 
(assumed) position on PC1 it can no longer be 
presumed that J* will lie on PC*1 and vice versa.  
But this is exactly what happens with celestial RFT: 
the parallel ruler construction shifts JJ* so that J* 
comes to lie on PC2 at F. The nice warm feeling 
RFT supporters get with this construction is that D 
will lie on PC1. But this self-evidence is entirely 
caused by the RFT construction gimmick. 

4.2. The specification of the position circle 
transferred with RFT/LSQ* 

When zenith distances are large the plane-geometric 
properties of the terrestrial analogy no longer apply 
and it is impossible to correctly specify a transferred 
position circle like PC*1 in Fig. 3 as the locus of 
points like J* and F whose backward-projected 
positions are postulated to lie on PC1 at J and D.  
This can be demonstrated in different ways8 but here 

we choose the Moon-Run-Sun example found in the 
ANM9 (see Fig. 4). 

The solution for the SH is forced by assuming a 
DR at say 59.4000 S/85.1000 E. The results with 
LSQ* are: 

Northern Hemisphere: Southern Hemisphere:
 Moon Sun Moon Sun 

LHA 
X 
Y 
TanA 
A 
Z 
Zn 
e 

353.3483 
-0.9481 
0.1074 
-0.1132 
-6.4609 

173.5391 
173.5391 

0.0000 

295.3366 
-0.2711 
0.9001 
-3.3202 

-73.2386 
106.7614 
106.7614 
-0.0000 

92.8268 
-0.2310 
-0.9258 
4.0077 

75.9896 
104.0104
255.9896
-0.0000 

395.0077 
0.7465 
-0.5713 
-0.7654 
-37.4288 
37.4288 

322.5712 
0.0000 

DR (Sun) 50.3496 N/14.0474 W 59.4000 S/85.1000 E 

Fix'Q (4th it) 50.49178 N/13.8418 W 59.0949 S/85.8293 E  
 

When GD-UT+K-Z is applied, the results are: 
 

 Northern Hemisphere: Southern Hemisphere

 Moon Sun Moon Sun 

FixQ 50.5117 N/13.8323 W 59.3735 W/85.1076 E

LHA 353.6209 295.3460 92.5608 34.2859 

Zn 173.7959 106.7762 256.3396 323.3593  
 

The plot for the NH is shown in Fig 4a. The 
distance between Fix'Q and FixQ for the NH is 1'.25, 
but for the SH it is 27'.75. With RFT/LSQ*, the 
backward-projected positions respectively from Fix1 
(NH) and from Fix2 (SH) are postulated to lie on the 
original position circle at J1 (NH) and J2 (SH) (see 
sketch Fig. 4b). If this were a correct proposition, 
the position circle passing through J1 and J2 should 
ave a zenith distance equal to 90° - Ho = 72o.5883.  

But the zenith distance of the position circle 
passing through these two points can only be 
72o.855110. 

This apparent contraction in zenith distance is not 
the only problem because none of the great-circle 
segments in Fig. 4b indicated with broken lines 
or  the angles they make can be evaluated. Also, the 
Zn-values of the Moon (earlier sight) shown above 
for the final LSQ* iteration are the azimuth bearings 
from the backward-projected positions J1 and J2 and 
not from Fix1 and Fix2. 

LSQ* cannot compute the actual azimuth bearing 
from the fix on the transferred GP. Even if this were 
possible, the properties (coordinates of the GP and 
zenith distance) of the earlier sight’s position circle 
transferred for the run data cannot be computed. 
We call this the 'Achilles heel' of LSQ*. The only 
correct way to transfer the GP of an earlier sight is 
GD-UT. 
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Fig. 4a. Plot of LSQ* transfer of an earlier sight (The Moon-    
-Run-Sun case in the ANM) 
 

 
Fig. 4b. Sketch of the implications of the LSQ* transfer as 
in Fig. 4a 

5 RANDOM AND SYSTEMATIC 
 ERRORS 

Error intercepts (e) indicate a possible combination 
of random and systematic error. Both types of error 
will displace a position line parallel to itself in a 
certain direction along its Zn axis.  Systematic error 
(eS) is caused by instrument  error  (e.g I.E, Dip)  and 

is equal in magnitude and sign for each sight in the 
collection. LSQ computes a random error fix (FixQ) 
and systematic error statistically constitutes bias.  
Maximum permissible systematic error (eS max) can 
be removed as a correction to the altitudes. LSQ will 
then determine a fix (FixS) corrected for eS max. 
This approach in fact reconciles conventional LSQ 
concerned with random error and traditional bisector 
constructions which allow for maximum systematic 
error in consistent 3-polygons. 

For practical navigational reasons and also lack 
of space we will confine the discussion to 3- and 4-
polygons. The main factor affecting the difference in 
location (distance d) between FixQ and FixS is 'total 
azimuth angle' (TAZ), which is the smallest angle or 
arc enclosing all azimuth (Zn) bearings. A statistic š 
expressing the difference in location is the ratio of d 
to average error intercept distance: š = d ÷ Σ|ei|/n.  
The consistency of a collection of sights is seen from 
the signs of the e’s found with LSQ: it is consistent 
if they all have the same sign; if one or more signs 
are different it is inconsistent (also see Fig. 1). 

Navigators are to take at least three subsights 
on  the same body for screening aberrant sightings 
in  the usual manner. The programmatic approach 
makes it possible to process all included subsights 
independently, rather than the averages of the 
subsights’ GMT and Hs data. The various ramifications 
of such an approach cannot be discussed here. 

During the short twilight periods navigators 
should concentrate on the best star triads indicated in 
AP 3270 Vol 1 which fall in group II.  Four sights 
should be planned to fall in groups IV and V.  As 
configurations in group V are preponderant, the 
effect of possible systematic error on the location of 
the LSQ fix is in this way minimized.  Collections I, 
II and III can be predicted from the approximate 
azimuths of the sights known beforehand, but this is 
not possible for IV and V.  When three sights fall in 
group I, a fourth sight may be taken so that the 
overall combination will have the favourable 
azimuth distribution (i.e TAZ > 180o).  Best results 
are generally obtained from two intersecting pairs in 
which the sights in each pair are widely separated in 
azimuth.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3-polygon: 4-polygon: 

TAZ > 180o  
 

Properties TAZ < 180o 
Inconsistent 

I 

TAZ > 180o  
Consistent 

II 

TAZ < 180o 
Inconsistent 

III 
Consistent 

IV 
Inconsistent 

V 
1 
2 
3 
4 
5 

% chance 
FixQ 
FixS 
š 
š range 

60 
inside 

outside 
large 

1.5 to 3.0 

40 
inside 
inside 
small 

around 0.2 

33 
in- or outside 
in- or outside 

large 
0.6 to 2.7 

12?  (P) 
inside 
inside 
small 

around 0.6 

87?  (P) 
in- or outside 
in- or outside 

smallest to negligible 
0.0 to 0.16 

 
Notes: Internal vertex angles (IVA) of an n-polygon are < 180o. Item 1 indicates the chance of getting certain  
combinations in twilight observations; if 4-polygons with TAZ > 180o are planned, the binomial distribution is as shown. 
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5.1 Procedures for obtaining eS max 
Sketched in Fig. 5 are vertices 1 and 2 of an              
n-polygon and adjacent IVAs A and B. The 
perpendicular h on side AB is computed with the 
known values of the two IVAs and the known 
distance (d) between the two vertices.  The distance 
d equals |d’Lat|/Cos(Zn ± 90), where d’Lat derives 
from the vertex latitudes computed with K-Z. The 
perpendicular h indicates |eS max| if it is the smallest 
among similar perpendiculars dropped on the other 
sides: H'o = Ho ± hmin/60, where H'o is a sight’s 
altitude corrected for eS max; the sign of hmin is 
opposite to the sign of the corresponding error 
intercept (e). An IVA is consistent (C) when the 
error intercepts of its sides have the same sign; 
otherwise it is inconsistent (IC). Two adjacent IVAs 
may form one of the following sequences: CC,            
IC-IC, C-IC (a and b) and IC-C (a and b). The IVA 
angles are computed as:  

C : |ZnA-ZnB| < 180  IVA = 180 - |ZnA-ZnB|; |ZnA-ZnB| >        
180  IVA = |Zn

           
A-ZnB| - 180, and 

IC: |ZnA-ZnB| < 180  IVA = |ZnA-ZnB|; |ZnA-ZnB| > 180  
IVA = 360 - |ZnA-ZnB|. 

Needed in the computation of h are the ½IVAs; if 
IVA = IC, ½IVA = ½(180 – IVA).  If the angles of 
two adjacent IVAs are indicated as respectively A 
and B, then A' and B' indicate their supplements.  
The formulas for computing the plane-geometric 
perpendicular h for different IVA sequences are 
shown in Fig. 5. 
 
 

 
Fig. 5. Determining the h-values for consistent cocked hat         
3-polygons and for n-polygons (n ≥ 3) 
 
 

With group I sights, the perpendicular h from the 
intersection of the bisector of the consistent (apex) 
IVA and this IVA’s opposite side determines eS 
max: 

 
 

The approximate method is sufficient and has the 
advantage that the distance d need not be computed. 
From the results for the Sun1-Sun2-Sun3 case 
shown in Fig 6 |Zn1-Zn3| > 180, thus IVAapex = 
= 251.7313 – 180 = 71.7313; e1 = 0'.75 and e3 = 
= 0'.86.  These values substituted in the approximate 
method give approximate |eS max| = 1'.36.  

5.2 Application of eS max to three 
 and four sights 

The navigator is in practice faced with two 
situations.  One is the need for updating the DR 
position for which FixQ is generally sufficient.  The 
other is the need for considering the vessel’s 
position in the presence of a known danger.  
Depending on the consistency of the sights, possible 
systematic error may significantly affect the location 
of the fix but not necessarily the error margin. 
A  third situation is simply that the navigator is 
prepared to speculate on the preponderance of either 
type of observation error and also to consider error 
margins at less than 95% probability.  
 

Removing eS max from a consistent 3-polygon 
(group II) will virtually eliminate all residual 
random error and FixS is at the point of intersection 
of the bisectors. As FixQ and FixS are relatively 
close, in both practical situations mentioned FixQ 
and its error margin will suffice. Space does not 
permit to demonstrate this, but with four inconsistent 
sights (group V) the two fixes will be very close and 
their respective error margins remain practically the 
same. Again, FixQ will suffice in all circumstances.         

 
In Fig 6. are worked examples of an inconsistent 

3-polygon (group I)11 and consistent 4-polygon 
(group IV)12. The inconsistent 3-polygon is 
avoidable in twilight observations but running fixes 
on the Sun remain most important and will often 
form an inconsistent collection. The chance of 
getting four consistent star sights, let alone larger 
collections of stars as dished up in contrived 
examples in the literature13 is remote. In the three 
Sun sights case, the DR position is wildly out and 
indicates that the danger has been cleared. If FixQ 
and its error margin is accepted, the vessel might not 
change course.  
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Fig. 6. Cases falling respectively in Group I and group IV 
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FixS with three inconsistent sights always lies 
outside the 3-polygon. It is prudent in this case to 
accept FixS and change course. 

 
Assuming long runs between sights as in this case 

is common in the literature but a habit which should 
not be emulated in practice. It compounds the 
(unknown) inaccuracies of the DR record. As the run 
data are used to transfer the position circles of earlier 
sights, a large discrepancy between the fix and 
the run record as in this case also tends to invalidate 
the fix. In other respects the DR position should be 
completely ignored as irrelevant. LSQ will 
determine the same fix regardless of a wide range of 
assumed (DR) positions.  

In the consistent 4-polygon case, noted is first the 
eccentric location of the fix. The distance between 
the two fixes is significant. Allowing for eS max 
substantially reduces the error margin, but in the 
presence of a known danger, the prudent navigator 
would adopt FixQ. 
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  1 See G. Huxtable, quoted in K.H. Zevering – The Navigator’s Newsletter (Foundation for the Promotion of the Art of Navigation), no. 88, p. 11-12. 
  2 See ANM, Vol. III, p. 165-166. 
  3 Data from M. Blewitt (1975, p. 30 and p. 33). GHA, Dec and Ho of Sun 284.2467, 18.4050 and 20.5150; Moon 19.3350, 15.4900 and 53.4550. 
  4 For the K-Z algebraic double sight position solution method see K. Herman Zevering – “The K-Z Position Solution For The Double Sight”, European Journal of 

Navigation, Vol. 1, No. 3 (and 4), 2003, p. 43-46. 
  5 ANM, Vol. II, p. 43. 
  6 See ANM, Vol. III, p. 36, 39-40. 
  7 With GD-UT, the coordinates of the GP may be transferred with the rhumbline equations and are indicated as GHA* and Dec*. With the vessel’s movement, 

the  GP of the sight taken at A transfers to A' (see Fig. 3). AA' is strictly not a rhumbline but part of a great circle. The angle of cut of this great circle with 
the meridians through respectively A and A' is not constant as the mercatorial bearing α at A suggests. Applying the convergency (c), for α could be substituted α' 
= α ± ½|c|, where c = (d/60)SinαTan(MeanDec).  In ∆ PAA', Dec* of the transferred GP at A' may be determined with LatA, α' and d/60. Angle (arc) APA' may 
be determined with LatA, Dec* and d/60, from which follows GHA*.  It can be shown that even with very large displacements these adjustments have a negligible 
effect compared to the rhumbline definitions of Dec* and GHA*. 

  8 See the discussion in Forum, The Journal of Navigation (2006), 59, p. 521-529. 
  9 ANM, Vol II, p 191-195; only the fix for the NH is worked out, with cosine-haversine and the traverse table.  The GMT data for Moon and Sun are: 05 59 45 and 

08 40 10.  The data for GHA, Dec and Ho are: Moon 7.9783, -22.0400, 17.4117; Sun 309.1783, 5.2050, 19.9450. The assumed DR position in the NH (Moon 
sight) is 50.1667 N/50.8333 W; course 70o, speed 12 kn/hr.  

10 Cosβ1 = (SinHo – SinLatJ1SinDec)/CosLatJ1CosDec and  Cosβ2 = (SinHo - SinLat J2SinDec)/CosLat J2CosDec. The angles β1 and β2 are known. SinHo = 
= [c1c2(a1+a2)+b1c2+b2c1]/(c1+c2), where a1 = Cosβ1; a2 =  Cosβ2; b1 = Sin Lat J1SinDec; c1 = CosLat J1CosDec; b2 = Sin Lat J2SinDec; c2 = CosLat J2CosDec. 
Sin Ho = [c1c2(a1+a2)+b1c2+b2c1]/(c1+c2). 

11 Data from G.G. Bennett (2003, p. 164). 
12 Data from M. Blewitt (1975, p 39) 
13 E.g see M. Blewitt (1975, 1997); T. Cunliffe (2001).  
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