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ABSTRACT: The paper presents a weather routing solution for sail-assisted ships. Since the route finding 
optimisation process is a multiobjective one, the emphasis is put on possible application of multiobjective 
optimisation methods. The paper focuses on two such methods, namely evolutionary algorithms and ranking 
methods represented by Fuzzy TOPSIS. In addition, a proposed set of optimization criteria is presented. 
Descriptions of assumed ship and sail models as well as exemplary speed characteristic are also provided. 
Finally, a proposal of application to a weather routing tool is presented

1 INTRODUCTION 

A problem of finding the most suitable vessel route 
taking into account changeable weather conditions and 
navigational constraints is referred to as a weather 
routing optimisation problem. Such a problem is 
mostly considered for ocean going ships where 
adverse weather conditions may impact both, often 
contradictory, economic and security aspects of 
voyage. 

One of the first approaches to the problem was a 
minimum time route planning based on a weather 
forecast called an isochrone method. The method 
was based on geometrically determined and 
recursively defined time fronts, so called isochrones. 
Originally proposed by R.W. James (James 1957), 
isochrone method was in wide use through decades. 
In late seventies based on the original isochrone 
method the first computer-aided weather routing 
tools were developed. However, along with 
computer implementation some problems arose, i.e. 
with so called “isochrone loops”. Numerous 
improvements to the method were proposed since 
early eighties, with (Hagiwara 1989, Spaans 1986, 
Wisniewski 1991) among others. Since then several 
different approaches to the optimisation problem 
was in use, with dynamic programming or genetic 
and evolutionary algorithms among others. 

Most of recent scientific researches in weather 
routing focus on shortening the passage time, 
reducing fuel consumption and avoiding severe 
weather i.e. tropical cyclones. Nowadays, 
evolutionary or genetic algorithms are common 
solutions for weather routing services. However, due 
to multiobjective nature of weather routing it is 

recommended to introduce some state-of-the-art 
multiobjective methods to the process of route 
finding. It may facilitate the process of reaching a 
trade-off between often conflicting economic and 
safety criteria sets. Thus, it is proposed to introduce 
multiobjective evolutionary algorithms as well as 
multiobjective ranking methods to the route finding 
process.  

The remainder of the paper is organized as 
follows: section 2 introduces the basic idea of a 
single-objected evolutionary algorithm. Section 3 
provides detailed description of multiobjective 
methods applicable to weather routing. The 
description includes multiobjective evolutionary 
algorithms (MOEAs) and multiobjective ranking 
methods represented by Fuzzy TOPSIS. Section 4 
presents proposed application of the methods to 
weather routing. Finally, section 5 summarizes the 
material presented.  

2 THE IDEA OF SINGLE-OBJECTED 
EVOLUTIONARY ALGORITHMS  

Evolutionary algorithms are natural successors of 
genetic algorithms. The key difference between 
them is in the chromosome structure. Genetic 
algorithms assume binary and fixed-length 
chromosome strings, whereas the evolutionary ones 
allow more complicated chromosome structures. It 
implies that original genetic binary operators, 
namely mutation and crossover, are substituted by 
evolutionary operators specialized to fit given 
chromosome structure and the optimisation task. 
However, the general idea of both genetic and 
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evolutionary algorithms remains the same. At first 
initial population of individuals is being generated 
and evaluated. After modifications by operators 
designed to improve algorithm’s convergence some 
individuals are selected and a new population is 
generated. The process of evaluation, modification 
and selection lasts until a termination condition is 
met.  

Single-objected goal function is utilized to 
evaluate the individuals by means of so called 
fitness function. The goal function is either equal to 
the fitness function or at least is an element of the 
latter. In general: the better the individual in terms of 
goal function the higher evaluation score it gets. By 
the evaluation process future modifications and 
selection is executed mainly for a group of “best 
fitted” individuals. This way the algorithm 
converges to a final set being sufficiently close to 
the optimal solution.  

Apart from the goal function, constraints are 
another important issue in single-objected 
optimisation process. In the evolutionary framework 
the constraints are met due to specialized operators 
assuring that any modified individual remains in the 
feasible solution space. 

3 MULTIOBJECTIVE METHODS APPLICABLE 
TO WEATHER ROUTING 

3.1 MultiObjective Evolutionary Algorithms 
(MOEAs) 

MultiObjective Evolutionary Algorithms (MOEAs) 
have been growing in popularity since its inception 
in mid-1980s. In general, MOEAs extend the 
functionality of regular single-objected evolutionary 
algorithms providing a method of dealing with 
multiple and often conflicting objectives.  

When multiobjective problems are being 
considered one of the important issues is the 
problem of ranking the criteria in terms of their 
importance and impact on final result. It is often 
designated that a decision maker is a person who 
makes such a choice. There are three distinctive 
subgroups of MOEA solutions, differentiated by the 
way of involving the decision maker: 
− “a priori” preference, where the decision maker 

combines all the objectives into a single scalar 
function; 

− progressive preference, where the decision 
making and optimization processes alternate; 

− “a posteriori” preference, where the resulting set 
of Pareto-optimal solutions is presented to the 
decision maker who selects the final solution 
from the set provided. 
This paper is focused entirely on Pareto-based 

MOEA solutions with “a posteriori” preference. It is 

caused by the fact that decision-making in the 
proposal described in the next section is transferred 
to the multiobjective ranking method.  

One should be aware that “MOEA” term refers 
to   some algorithmic framework rather than a 
specific ready-to-use and universal solution. Thus, 
already known MOEA techniques should be applied 
prior to building a problem-oriented multiobjective 
evolutionary application. Thus, the following 
subsections describe core set of basic MOEA 
techniques. 

3.1.1 Secondary population 
Secondary population is an additional population 

maintained throughout MOEA execution time, 
collecting all Pareto-optimal solutions found so far 
during the search process. Its main goal is to 
preserve all desirable solutions throughout the 
generation process. In accordance with Pareto 
notation the secondary population is termed 

, where t denotes current generation number. 
Similarly, a current set of Pareto-optimal solutions 
determined at the end of each generation with 
respect to the current MOEA generational 
population is termed . It is assumed, though, 
that  is an empty set and known without t 
annotation stands for the final set of Pareto optimal 
solutions collected before MOEA termination. 
Several strategies of secondary population storage 
exist. The most obvious and commonly used is the 
strategy of adding to in the end 
of each generation  t: 
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The set of must be periodically checked 

against obsolete Pareto solutions as Pareto 
optimality should always be evaluated within current 
Ω set. The simplest policy does not assume explicit 
copying solutions back into the next 
population. However, other strategies exist where 
the secondary population participates in a 
tournament selecting next generations or is directly 
inserted into the next mating population.  
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3.1.2 Multiobjective ranking 
Multiobjective evolutionary approach enforces 

that some transformation of the performance vector 
into a scalar fitness value is necessary. This 
transformation is achieved by means of a 
multiobjective ranking, often also referred to as 
Pareto ranking. In general, there are several ranking 
methods. All these methods are based on an 
assumption that preferred Pareto optimal solutions 
are ranked the same value whereas other solutions 
are assigned some less desirable rank value. 
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3.1.3 Niching and fitness sharing 
The term niching refers to the process of 

clustering in either solution space or criterion space. 
In this process clusters consist of groups formed by 
some individuals selected from the entire 
population. Niching is primarily aimed at finding 
and maintaining multiple optima. In result, this 
technique should assure a good spread of discovered 
solutions and prevent MOEA algorithm from being 
swamped by solutions with identical fitness. Fitness 
sharing is the most popular realization of the niching 
technique. It is based on an assumption that 
individuals in a particular niche share available 
resources. Thus, the more individuals are located in 
the vicinity of a certain individual, the more its 
fitness value is deteriorated.  The vicinity is most 
often determined by a distance measure d(i,j) and 
specified by niche radius σshare. The distance 
function d(i,j) operates either in solution space or 
criterion space, resulting in appropriate type of 
fitness sharing. 

3.1.4 Mating restrictions 
The idea behind restricted mating is to prevent or 

minimize offsprings, so called lethals, created by 
recombination of chromosomes from different 
niches. Such individuals can lead to degradation of 
MOEA performance. To remedy the problem some 
restrictions to mating might be introduced providing 
a distance metric and a maximum distance value 
σmate for which mating is still permitted. The most 
popular solution for mating restriction is to 
introduce the fitness sharing niche radius σshare into 
the problem and setting σmate=σshare. However, it is 
questioned (Van Veldhuizen 2000) whether such 
restriction policy is indeed a compulsory MOEA 
component, especially when there is no quantitative 
evidence of its benefits. 

3.2 Fuzzy TOPSIS as a multobjective ranking 
method 

Ranking methods belong to a group of 
multiobjective optimisation methods where 
preferences of the decision maker are utilized to 
build a ranking of alternatives. The ranking is a list 
of all possible solutions ordered from the least to the 
most desirable one. Given order is achieved by 
casting all the objectives into a single-objective goal 
function. Preferences are reflected by weight values 
assigned to the original objectives in the aggregated 
goal function.   

Technique for Order Preference by Similarity to 
an Ideal Solution (TOPSIS) is a multiobjective 
ranking method proposed by Hwang & Yoon 
(Hwang et al. 1982). The method is based on a 
concept that the best alternative among the available 

alternative set is the closest to the best possible 
solution and the farthest from the worst possible 
solution simultaneously. The best possible solution, 
referred to as an ideal one, is defined as a set of the 
best attribute values, whereas the worst possible one, 
referred to as a negative-ideal solution, is a set of the 
worst attribute values. In order to compare the 
alternatives and build the output ranking, the 
Euclidean distances between each alternative and 
both the ideal and the negative-ideal solutions are 
calculated. Then the closeness coefficient is 
determined to measure the two distances 
simultaneously. Sorting in descending order the 
coefficient values assigned to the alternatives creates 
the final TOPSIS ranking. The alternative with the 
highest ranking value is considered as the most 
desirable. 

Based on the original TOPSIS method, an 
extension has been proposed by Chu & Lin (Chu et 
al. 2003) providing support for fuzzy criteria and 
fuzzy weights both described by triangular fuzzy 
values. The new method has already been applied to 
navigational problems in (Szlapczynska 2005).  

Detailed Fuzzy TOPSIS algorithm differs from 
standard TOPSIS one in the following: 
− each criterion can be either crisp or fuzzy, the 

latter means that the criterion is described by a 
linguistic variable with triangle fuzzy values; 

− weight vector is described by a set of triangle 
fuzzy values assigned from another linguistic 
variable; 

− decision matrix is converted to a fuzzy decision 
matrix;   

− scaled V matrix is a result of multiplication of 
fuzzy weight vector and fuzzy decision matrix; 

− in order to determine ideal and negative-ideal 
solutions first the scaled V matrix is defuzzified, 
then the standard TOPSIS computations are 
continued. 

As a result, similarly to original TOPSIS, final 
Fuzzy TOPSIS ranking consists of crisp values. The 
alternative with the highest ranking value is 
considered as the most desirable. 

4 WEATHER ROUTING FOR SAIL-ASSISTED 
SHIPS AS A MULTIOBJECTIVE 
OPTIMISATION PROBLEM  

4.1 Model assumed 
For a sail-assisted ship separate ship and sail models 
are assumed. Ship model is based on a B-470 bulk 
carrier. Its basic parameters are shown in Table 1.  

 
Table 1.  Basic parameters of the ship model 

Parameter name Value 
Length 172 m 
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Width 22.8 m 
Draught 9.5 m 
Height 14.3 m 
Service speed 15 kn 
Displacement 30,288 t 

Sail model presented in Figure 1 is based on 
textile winds from “Oceania” ship. There are six 
sails forming a palisade. Each sail has 522m2 sail 
surface area. 

For given ship and sail models, the speed 
characteristic is determined based on algorithm by 
Oleksiewicz (Oleksiewicz in prep.).  An exemplary 
speed characteristic for starboard tack is presented in 
Figure 2. 
 

 
Fig. 1. Sail model 
 

 
Fig. 2. Exemplary speed characteristic for given ship and sail 
model - starboard tack 

4.2 Problem definition 
Prior to a problem definition a model of ship 
movements is assumed as kinematical one with 

elements of ship’s dynamics according to possibility 
of manoeuvre execution. 

The values to be found by the optimisation 
process of route finding are route’s waypoints 
defined by their geographical coordinates and ship 
speed between two consecutive waypoints. The 
optimisation criteria are split into two groups, 
namely: 
− economic criteria, such as passage time and fuel 

consumption; 
− safety criteria, represented by traffic intensity and 

constraint violation factors. 
Thus, the goal function is defined as presented by 
equations 2 - 4:  

minrifvtfrivtf traffsafetyfcreconomytrafffcr ⎯→⎯= )},(),,({),,,(  (2) 

)}(),({),( __ fcnconsumptiofuelrtimepassagefcreconomy vftfvtf =  (3) 

)}(),({),( int_int_ rfifrif violationconstratraffensitytraffictraffsafety =  (4) 

where: 
tr –  passage time [h], 
vfc –  total fuel consumption [t], 
itraff –  traffic intensity factor [/], 
r –  penalty function for constraint violation [/]. 
All limitations to the problem domain in weather 

routing are purely navigational. Landmasses that 
cannot be crossed constitute the prime constraint. 
Even a small violation of the constraint results in a 
route unacceptable from navigational standpoint. 
Along with an assumption that land shore does not 
change its shape during a route execution this 
constraint is assumed static. However, other 
navigational constraints exist that do not fall into 
category of static ones, namely ice phenomenon and 
tropical cyclones. Available information about ice 
and cyclones is mostly derived from forecasted, that 
is probabilistic, data. Moreover, both ice concentra-
tion as well as a centre of a tropical depression 
changes with time. Thus these constraints are 
assumed fuzzy dynamic. Last but not least constraint 
is determined by the assumed ship’s draught. Given 
ship model is able to navigate only through waters 
sufficiently deep for assumed draught value.  

4.3 Proposed solution for the problem 
The solution proposed is based on the optimisation 
criteria defined in the previous subsection. It utilizes 
two basic multiobjective mechanisms, namely 
multiobjective evolutionary algorithm (MOEA) and 
multiobjective ranking method - Fuzzy TOPSIS. In 
general, the main algorithm is presented in Figure 3. 

In the proposed solution the evolutionary 
framework is responsible for iterative process of 
population development. MOEA-specific techniques, 
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namely multiobjective ranking, secondary population 
and niching extend the framework to achieve a 
Pareto-optimal set of routes according to given 
criteria set. Mating restriction, as a MOEA 
technique of questionable profits, is not utilized in 
the proposal. 

Initial population of routes will be generated 
based on an orthodrome and a route determined by 
the adopted isochrone method (Szlapczynska et al. 
in prep.). The population should consist of avg. 50 
individuals, each being a random mutation of the 
basic routes. Also pure orthodrome and isochrone 
route should belong to the initial population. In 
addition to that, it is worth considering whether 
some other routes optimising one of the other 
criteria (fuel consumption, vessel traffic intensity, 
degree of constraints violation) should be included 
in the initial population. 
 
 

 
 
Fig. 3. Main algorithm of the proposed multiobjective weather 
routing 

 
The process of fitness assignment will include 

multiobjective ranking and niching, necessary 
for  assumed multiobjective goal function. In the end 
of each generation an increase of fitness function 
will be determined. The evolutionary process will 
be  terminated whenever the increase will be 
satisfactorily small (smaller than some ε value). 
Then, the ranking Fuzzy TOPSIS method will 
prepare the output ranking facilitating the final 
decision which route to choose. 

If the termination condition is not met the 
iterative process of population development must 
continue. First, dominance between individuals 
should be determined. Based on this information the 
secondary population will be updated. A new 
population will be created by means of selection and 
modification processes. Again all individuals in 
the population will be assigned their fitness values 
and the evolutionary iterations will proceed until the 
termination condition is finally met.  

5 SUMMARY 

The paper describes a possible multiobjective 
approach to weather routing. Two families of 
multiobjective decision-making methods are 
presented, namely multiobjective evolutionary 
algorithms and ranking methods. The author 
describes model assumed and defines problem of 
route finding in weather routing. Then a solution to 
given model and problem is presented. The proposal 
includes an algorithm determining a route satisfying 
given optimisation criteria and navigational 
constraints. Further details on the proposed 
algorithm will be provided as soon as the weather 
routing algorithm in finally implemented. 
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